721 research outputs found

    Dynamic vs Oblivious Routing in Network Design

    Full text link
    Consider the robust network design problem of finding a minimum cost network with enough capacity to route all traffic demand matrices in a given polytope. We investigate the impact of different routing models in this robust setting: in particular, we compare \emph{oblivious} routing, where the routing between each terminal pair must be fixed in advance, to \emph{dynamic} routing, where routings may depend arbitrarily on the current demand. Our main result is a construction that shows that the optimal cost of such a network based on oblivious routing (fractional or integral) may be a factor of \BigOmega(\log{n}) more than the cost required when using dynamic routing. This is true even in the important special case of the asymmetric hose model. This answers a question in \cite{chekurisurvey07}, and is tight up to constant factors. Our proof technique builds on a connection between expander graphs and robust design for single-sink traffic patterns \cite{ChekuriHardness07}

    Shortest Path versus Multi-Hub Routing in Networks with Uncertain Demand

    Full text link
    We study a class of robust network design problems motivated by the need to scale core networks to meet increasingly dynamic capacity demands. Past work has focused on designing the network to support all hose matrices (all matrices not exceeding marginal bounds at the nodes). This model may be too conservative if additional information on traffic patterns is available. Another extreme is the fixed demand model, where one designs the network to support peak point-to-point demands. We introduce a capped hose model to explore a broader range of traffic matrices which includes the above two as special cases. It is known that optimal designs for the hose model are always determined by single-hub routing, and for the fixed- demand model are based on shortest-path routing. We shed light on the wider space of capped hose matrices in order to see which traffic models are more shortest path-like as opposed to hub-like. To address the space in between, we use hierarchical multi-hub routing templates, a generalization of hub and tree routing. In particular, we show that by adding peak capacities into the hose model, the single-hub tree-routing template is no longer cost-effective. This initiates the study of a class of robust network design (RND) problems restricted to these templates. Our empirical analysis is based on a heuristic for this new hierarchical RND problem. We also propose that it is possible to define a routing indicator that accounts for the strengths of the marginals and peak demands and use this information to choose the appropriate routing template. We benchmark our approach against other well-known routing templates, using representative carrier networks and a variety of different capped hose traffic demands, parameterized by the relative importance of their marginals as opposed to their point-to-point peak demands

    Multi-Agent Submodular Optimization

    Get PDF
    Recent years have seen many algorithmic advances in the area of submodular optimization: (SO) min/max~f(S): S in F, where F is a given family of feasible sets over a ground set V and f:2^V - > R is submodular. This progress has been coupled with a wealth of new applications for these models. Our focus is on a more general class of multi-agent submodular optimization (MASO) min/max Sum_{i=1}^{k} f_i(S_i): S_1 u+ S_2 u+ ... u+ S_k in F. Here we use u+ to denote disjoint union and hence this model is attractive where resources are being allocated across k agents, each with its own submodular cost function f_i(). This was introduced in the minimization setting by Goel et al. In this paper we explore the extent to which the approximability of the multi-agent problems are linked to their single-agent versions, referred to informally as the multi-agent gap. We present different reductions that transform a multi-agent problem into a single-agent one. For minimization, we show that (MASO) has an O(alpha * min{k, log^2 (n)})-approximation whenever (SO) admits an alpha-approximation over the convex formulation. In addition, we discuss the class of "bounded blocker" families where there is a provably tight O(log n) multi-agent gap between (MASO) and (SO). For maximization, we show that monotone (resp. nonmonotone) (MASO) admits an alpha (1-1/e) (resp. alpha * 0.385) approximation whenever monotone (resp. nonmonotone) (SO) admits an alpha-approximation over the multilinear formulation; and the 1-1/e multi-agent gap for monotone objectives is tight. We also discuss several families (such as spanning trees, matroids, and p-systems) that have an (optimal) multi-agent gap of 1. These results substantially expand the family of tractable models for submodular maximization

    Edge-Disjoint Paths in Planar Graphs

    Get PDF
    We study the maximum edge-disjoint paths problem (MEDP). We are given a graph G = (V,E) and a set ΀ = {s1t1, s2t2, . . . , sktk} of pairs of vertices: the objective is to find the maximum number of pairs in ΀ that can be connected via edge-disjoint paths. Our main result is a poly-logarithmic approximation for MEDP on undirected planar graphs if a congestion of 2 is allowed, that is, we allow up to 2 paths to share an edge. Prior to our work, for any constant congestion, only a polynomial-factor approximation was known for planar graphs although much stronger results are known for some special cases such as grids and grid-like graphs. We note that the natural multicommodity flow relaxation of the problem has an integrality gap of Ω(√|V|) even on planar graphs when no congestion is allowed. Our starting point is the same relaxation and our result implies that the integrality gap shrinks to a poly-logarithmic factor once 2 paths are allowed per edge. Our result also extends to the unsplittable flow problem and the maximum integer multicommodity flow problem. A set X ⊆ V is well-linked if for each S ⊂ V , |ÎŽ(S)| ≄ min{|S ∩ X|, |(V - S) ∩ X|}. The heart of our approach is to show that in any undirected planar graph, given any matching M on a well-linked set X, we can route Ω(|M|) pairs in M with a congestion of 2. Moreover, all pairs in M can be routed with constant congestion for a sufficiently large constant. This results also yields a different proof of a theorem of Klein, Plotkin, and Rao that shows an O(1) maxflow-mincut gap for uniform multicommodity flow instances in planar graphs. The framework developed in this paper applies to general graphs as well. If a certain graph theoretic conjecture is true, it will yield poly-logarithmic integrality gap for MEDP with constant congestion

    Patterns of past and recent conversion of indigenous grasslands in the South Island, New Zealand

    Get PDF
    We used recent satellite imagery to quantify the extent, type, and rate of conversion of remaining indigenous grasslands in the inland eastern South Island of New Zealand in recent years. We describe the pattern of conversion in relation to national classifications of land use capability and land environments, and ecological and administrative districts and regions. We show that although large areas of indigenous grasslands remain, grassland loss has been ongoing. Indigenous grassland was reduced in the study area by 3% (70 200 ha) between 1990 and 2008. Almost two-thirds of post-1990 conversion occurred in threatened environments with less than 30% of indigenous cover remaining, primarily in the Waitaki, Mackenzie and Central Otago administrative districts. This conversion occurred primarily on non-arable land. In the Mackenzie and Waitaki districts the rate of conversion in 2001-2008 was approximately twice that in 1990-2001. Opportunities to protect more of the full range of indigenous grasslands lie with the continuing tenure review process in these districts

    Directed Network Design with Orientation Constraints

    Get PDF
    We study directed network design problems with orientation constraints. An orientation constraint on a pair of nodes u and v states that a feasible solution may include at most one of the arcs (u,v) and (v,u). Such constraints arise naturally in many network design problems, since link or edge resources such as fibre can be used to support traffic in one of two possible directions only. Our first result is that the directed network design problem with orientation constraints can be solved in polynomial time in the case where the requirement function f is intersecting supermodular. (The case where there no orientation constraints follows from work of Frank [6].) The second main result of the paper is a 4-approximation algorithm for the minimum cost strongly connected subgraph problem with orientation constraints. Our algorithm shows that the problem of enforcing orientation constraints can be reduced to the minimum cost 2-edge connected subgraph problem on undirected graphs. Finally, we study the problem for general crossing supermodular functions and show the following bi-criteria approximation result. Let k denote the maximum requirement of any set under the given requirement function f. We give 2k-approximation algorithm to construct a solution that satisfies a slightly weaker requirement function, namely, f\u27(S) = max{f(S) - 1,0}
    • 

    corecore